

A BNFL Group company

Potential Licensing Issues Associated with Decommissioning the Hematite Site — Open Session

Presentation to USNRC January 18, 2006

A. Joseph Nardi License Administrator Westinghouse Electric Company

Meeting Purpose

- Describe issues and discuss Westinghouse plans
- Obtain Initial NRC Staff Feedback on Safety,
 Accountability, Criticality, Security and Regulatory Issues associated with decommissioning the Hematite site
- Obtain guidance for next steps on exemption requests

Agenda – Open Session

- Introduction of participants
- Background
- Revisions to Chapter 4 (Nuclear Criticality Safety) of License
- Technical approach to nuclear criticality safety during remediation
- NRC feedback
- Closing remarks

Hematite - Background

- Processing of uranium for fuel for various government and civilian projects
- Pre-1974 Handled uranium up to fully enriched
- Post 1974 Limited to LEU
- Burial pits
- Westinghouse purchased in 2000
- Operations ceased 2001
- Rev 2 of Decommissioning plan tendered in August '05

Revisions to Chapter 4 of License Application

- Chapter 4 of license provides nuclear criticality safety provisions
- Presently based on operational considerations
- Text will be simplified to reflect decommissioning status
 - –Editorial changes
 - -Eliminate detailed parameter listings vs. enrichment
 - -Remove poison and moderator control provisions
 - -Eliminate process equipment information

Revisions to Chapter 4 (continued)

Additions

- -Specify acceptable methods to determine mass
- Add safe individual units and array spacing parameters for HEU
- -Waste material that meets concentration limit based on 10CFR71 definition of "fissile exempt" would not be subject to other nuclear criticality safety requirements
- Maintain present provisions to have Criticality Safety Evaluations by specialists to cover unanticipated conditions

Safe Unit Limits - Decommissioning

•	w/o ²³⁵ U	Parameter
Mass (kg UO ₂)	100%	0.795
Volume (liters)	100%	5.5
Cylinder Dia. (inches)	100%	7.3
Slab Thickness (inches)	100%	1.3
Concentration	100%	"fissile exempt"

Minimum Spacing Areas

Minimum Spacing Areas⁽¹⁾ for Mass, Geometric and Concentration Limits

	Spacing Area (ft²)
Mass	3.5
Volume	9.0
Cylinder (per foot of cylinder height)	5.0
"Fissile Exempt" concentration	Unlimited

(1) Subject to a minimum edge-to-edge unit separation of 12 inches.

Licensing Issues

- Exemption from 10CFR70.24(a), "Criticality accident requirements"
- Bulk material that meets 10CFR71 definition of "fissile exempt" does not require single unit and spacing parameter restrictions

Material Control Methods

- Use of portable survey instruments (i.e. 2X2 NaI detector) can easily distinguish when soil-like materials approach "fissile exempt" concentrations
- Instrument set on ²³⁵U peak will register ~72,000 cpm for material at 1,070 pCi ²³⁵U/g
- Anticipated soil concentrations are much less
- Will be able to set conservative survey criteria to assure that concentration limit is not exceeded

Detection Capability

- Instrument choice example
 - –2X2 NaI(Tl) Detector
 - -Spectral Analysis, ROI (170 keV to 210 keV)
 - Compton Scattering subtraction
- Calibration Factor = 67.5 cpm per pCi ²³⁵U/g (demonstrated by field measurements)
- Background = 0.6 ± 28.2 cpm
- Signal = 72,000 cpm @ 1,070 pCi ²³⁵U per gram of waste material
- MDA approximately 6 pCi ²³⁵U per gram of soil

Conclusion

- Westinghouse's plans for assuring nuclear criticality safety for material during decommissioning are reasonable and result in assurance of the public health and safety
- The exemptions are justified and meet criteria for granting of exemptions
- Westinghouse will document the basis for these exemptions in the application
- Schedule Approvals required at the same time as Decommissioning Plan is approved

A BNFL Group company

